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Background

とあるOS - Pronounced "Toe Ah Roo Oh Es"

Means something along the lines of "A Specific OS" or "Some Such OS"

Parody of generic hobby OS names like "MyOS"



Background

Project started in December, 2010

First code commits on 2011-01-15

First screenshot from 2011-01-20



Design Goals - Then

POSIX

x86

C



Overall Design

Monolithic, modular

32-bit x86

Unix-like

Compositing window manager



Publicity

github.com/showcases/open-source-operating-systems

phoronix.com/scan.php?page=news_item&px=MTgzMTk

osnews.com/story/28038/ToAruOS_hobby_kernel_and_userspace



April Fools: PonyOS



What happens when...



What happens when...

… you type "google.com" into your web browser and hit <enter>?



What happens when...

… you type "google.com" into your web browser and hit <enter>?



What happens when...

… you type `fetch http://toaruos.org/docs/talk.pdf` in a shell and hit <enter>?



You are standing in an open field...

First, let's talk about the initial state of our system.

We'll assume we've already opened a terminal, the shell is running, and it is 
waiting for our input.

But what does that look like in code?



First off, let's talk about the shell.

ToaruOS's shell implements 
complex line editing using a 
function called rline, which you 
can see to the right.

Since we're waiting for input, 
rline is blocked in the call to 
fgetc on line 48.



Skipping over the details of the C 
library, this call to fgetc 
eventually turns into a system 
call, so we'll turn our attention to 
the system call handler and 
sys_read in the kernel.

sys_read takes three arguments: 
a file descriptor number, a 
pointer to a buffer, and a length 
of data to read. The kernel will 
use the current process's file 
descriptor table to find the right 
read method to run.



The file descriptor that our fgetc 
call is trying to read on is 0 - 
standard input, which for the 
shell points to a pseudo terminal 
device, so our next stop is the tty 
driver, where we find 
read_pty_slave. We'll skip over 
some details of tty modes and 
note that read_pty_slave has 
called ring_buffer_read. TTYs in 
ToaruOS use a ring buffer to 
store data that has been written 
on one end but not read from the 
other.



So what's our ring buffer doing? 
We've asked to read from an 
empty ring buffer, so the ring 
buffer needs to wait until data is 
available to read. It calls 
sleep_on to wait until then.

What will wake it up? Writing to 
the other end of the TTY, which 
will be done by the terminal 
emulator.



As such, our next stop in the 
codebase is the terminal 
emulator - one of ToaruOS's 
earliest graphical applications.

The terminal is actually doing a 
lot of things, but we're 
particularly interested in how it 
will receive our key press when 
we first type 'f' and for that we 
need to look at the 
handle_incoming method.



The terminal is waiting for events 
from the window compositor, 
which will send messages 
through a ToaruOS-specific 
messaging system called a 
packet exchange.

That means we need to look at 
another application to see how 
our key presses get to the shell, 
so next we'll look at the 
compositor.



The compositor performs many 
functions, but we'll focus on how 
it handles keyboard input for 
now.

The compositor runs a thread to 
read scancodes from the 
keyboard device file and turns 
them into messages which it 
sends back to another thread.

The read call on line 562 directly 
translates to a read system call 
that is very similar to the one 
from the shell.



Hurry up and wait...

So our shell, terminal, and compositor are all sitting around waiting for other 
things to happen.

Let's see how things unfold when we hit that first key: f



As soon as we hit the key, a 
hardware interrupt triggers on the 
CPU. Long before our shell ever 
started running, the PS/2 
keyboard driver set up an 
interrupt handler, and so the CPU 
will call our keyboard_handler 
function.

The keyboard driver is very 
simple and just fills a buffer with 
the incoming scancode, which 
will wake up the compositor.



Back in the compositor, our read 
call has finished and we have a 
scancode. We turn that scancode 
into a key event message and 
send it to the compositor's main 
thread as a packet exchange 
message with yutani_msg_send.



The compositor's main event 
handler thread is waiting to 
receive messages, both from the 
keyboard thread and from all of 
the client applications that are 
communicating with it.

It will see the key event and then 
pass it off to handle_key_event.

There, it will be checked against 
various window management 
keybindings and eventually 
passed off to the focused 
window's application.

...

...

...



… which brings us back to the 
terminal. Our call to yutani_poll 
returns, giving us a KEY_EVENT, 
which we then pass to the 
appropriately-named key_event 
for further processing.



key_event checks if we need to 
do special processing before 
writing the key to the TTY master. 
Many keys, such as the function 
keys and arrow keys, need to be 
encoded as special escape 
sequences as they can't be 
represented as single bytes.

Our f key can just be sent as the 
character "f", though, so we call 
handle_input('f') which will 
write to our TTY.



As there is now data available 
from our TTY, we can go back to 
the shell, which will finally return 
from fgetc, receiving the letter f. 

To support advanced line editing 
like cursor movements, the shell 
needs to figure out if the data it is 
receiving is raw characters or 
escape sequences, so it runs 
everything through a state 
machine. Luckily, our f needs no 
special processing, so we can 
continue.



Something we neglected to 
mention earlier, as we glossed 
over TTY modes, is that our TTY 
is set to not automatically echo 
the characters we type as we 
type them. This is important in 
supporting line editing, and 
means we need to write back out 
the character we received so it 
shows up on the terminal. We 
also need to add the `f` to an 
internal buffer.



Since we've printed a character, 
we now need to go back up the 
TTY to the terminal again! Since 
we've already seen some of the 
details of the TTY device, we'll 
skip all the way to the terminal 
itself.

A thread in the terminal is always 
reading from the TTY master, and 
will receive our `f` and run it 
through the ANSI escape 
sequence processor.



Terminals are complicated. In the 
early days of digital computer 
text, only basic black-and-white 
character cell displays were 
available, and they only 
supported a handful of 
characters.

These days, terminals support 
full-color Unicode text, hundreds 
of formatting options, cursor 
movement...

These formatting effects are 
made possible through complex 
escape sequences.



We're going to skip all of that.



At the end of the day, the escape 
processor will eventually call two 
functions: cell_set and 
cell_redraw. The first of these 
stores the `f` and all of its 
formatting hints into a data 
structure representing the 
terminal display, and the latter 
actually draws the glyph for `f` 
into the window for the terminal.



At this point, we need to take a 
quick break from looking at code 
and talk about how windows get 
displayed on the screen in 
ToaruOS.

As we mentioned earlier, 
ToaruOS has a window 
compositor. The most important 
job the compositor has is to 
composite - to take all of the 
windows from all of the running 
applications and turn them into a 
final scene.



ToaruOS's window compositor is 
called Yutani (a reference to 
Wayland and Alien). Yutani 
represents windows as canvases 
of 32-bit RGBA pixels, which it 
stores in shared memory regions.

When an application wants to 
draw to a window, it modifies the 
pixels directly in memory and 
then informs the compositor that 
it should redraw the modified 
regions using a flip message.



The compositor redraws only the 
regions which have been 
modified since the last redraw, 
producing a final image which it 
then copies into video memory.



To actually draw text, ToaruOS 
makes use of a library called 
Freetype to read TrueType and 
OpenType fonts and draw glyphs.

Once we've drawn the glyph for 
our 'f', we tell the compositor to 
flip our modified regions.



The compositor collects all of the 
screen updates and then blits the 
windows together.



Using a library called Cairo to 
perform pixel pushing, the 
compositor can support 
transparent, rotated, and 
animated windows.



The last step in this process is to 
copy the final frame to video 
memory so it shows up on 
screen.



Finally, we've typed the letter `f`!



This process repeats for the rest 
of our input until we hit enter.



At this point, the shell will parse 
our input, splitting it on spaces, 
expanding variables, etc.



Once the shell has processed our 
input, it will fork a child process.



Forking is the traditional Unix 
method for creating new 
processes. Forking produces a 
nearly identical copy of the 
running process - it has the same 
virtual memory contents, the 
same instruction pointer, the 
same file descriptors.



But our new process will have a 
different return value for the call 
to fork than its parent, allowing it 
to take a different code path.

In the shell, that code path leads 
to a call to execvp. Within the C 
library, execvp is a complicated 
series of calls to readdir and 
stat to find a suitable executable 
within $PATH. We'll skip that and 
jump to what happens when we 
call the underlying exec system 
call.



exec needs to load and parse our 
binary.

ToaruOS uses a binary format 
called ELF, and our first task is to 
read that ELF file and make sure 
it is actually an ELF.

So let's look at how the file 
system works.



ToaruOS's primary on-disk 
filesystem is ext2, an older 
version of the most commonly 
used filesystem on Linux (ext4).

ext2 tracks files in a structure 
called an inode, and each inode 
references blocks that contain 
file data.

When we read part of a file, we 
need to find what blocks to look 
at and where they are on disk.



Our ext2 driver keeps recently 
used blocks in a cache, but if we 
haven't yet read the blocks we 
need, we'll need to read them 
from the underlying block device - 
in this case, an ATA hard disk.



Once we've read all of the blocks 
from disk, we can load our binary 
into memory by copying 
sections.

When we're done loading the 
binary, we jump to userspace and 
start running our newly loaded 
code.



After all of that work, we're now 
running our fetch binary.

fetch makes use of a special 
feature in ToaruOS: The network 
filesystem. Instead of creating a 
socket, fetch opens the virtual 
file /dev/net/toaruos.org:80



In the network filesystem, we 
lookup "toaruos.org" and create a 
TCP socket. We store this socket 
in a virtual file node that we'll add 
to the running process's file 
descriptor table.



Writing to the virtual file that the 
network filesystem gave us will 
send TCP packets.



Back in fetch, we write our HTTP 
requests headers...



When the network card receives 
packets from the router, it passes 
them to the network processing 
thread. Each open socket has a 
corresponding queue of data that 
has yet to be read, and the 
network processing thread will 
add our newly received packet to 
the appropriate queue.

Reading from the virtual file will 
call net_recv to pull data out of 
the queue.



The web server on the other end 
will respond, and we will read the 
result and print it to the terminal.



Turns out we just printed a PDF 
to our terminal, which looks like a 
bunch of garbage.

Oops.



Demos



Demos

Python 2.7

vim, gcc

Quake



Future



Design Goals - Now

Porting software

GUI

Clean code



Future

Now: "Misaka" x86-64 kernel project

Next year: Porting NetSurf; maybe Webkit?

Far future: glib, GTK...



Questions?



Thanks!
IRC
#toaruos on Freenode

Sites
toaruos.org
github.com/klange/toaruos

Historical Screenshots
y/toaruos-screens

Live CD
y/toaruos-iso
 


