
ToaruOS at 5 Years
A Closer Look at a Hobbyist Operating System

Outline

Outline

Background & Design Goals

"What happens when…" - deep walkthrough

Demos

Future

Questions?

Background

Background

とあるOS - Pronounced "Toe Ah Roo Oh Es"

Means something along the lines of "A Specific OS" or "Some Such OS"

Parody of generic hobby OS names like "MyOS"

Background

Project started in December, 2010

First code commits on 2011-01-15

First screenshot from 2011-01-20

Design Goals - Then

POSIX

x86

C

Overall Design

Monolithic, modular

32-bit x86

Unix-like

Compositing window manager

Publicity

github.com/showcases/open-source-operating-systems

phoronix.com/scan.php?page=news_item&px=MTgzMTk

osnews.com/story/28038/ToAruOS_hobby_kernel_and_userspace

April Fools: PonyOS

What happens when...

What happens when...

… you type "google.com" into your web browser and hit <enter>?

What happens when...

… you type "google.com" into your web browser and hit <enter>?

What happens when...

… you type `fetch http://toaruos.org/docs/talk.pdf` in a shell and hit <enter>?

You are standing in an open field...

First, let's talk about the initial state of our system.

We'll assume we've already opened a terminal, the shell is running, and it is
waiting for our input.

But what does that look like in code?

First off, let's talk about the shell.

ToaruOS's shell implements
complex line editing using a
function called rline, which you
can see to the right.

Since we're waiting for input,
rline is blocked in the call to
fgetc on line 48.

Skipping over the details of the C
library, this call to fgetc
eventually turns into a system
call, so we'll turn our attention to
the system call handler and
sys_read in the kernel.

sys_read takes three arguments:
a file descriptor number, a
pointer to a buffer, and a length
of data to read. The kernel will
use the current process's file
descriptor table to find the right
read method to run.

The file descriptor that our fgetc
call is trying to read on is 0 -
standard input, which for the
shell points to a pseudo terminal
device, so our next stop is the tty
driver, where we find
read_pty_slave. We'll skip over
some details of tty modes and
note that read_pty_slave has
called ring_buffer_read. TTYs in
ToaruOS use a ring buffer to
store data that has been written
on one end but not read from the
other.

So what's our ring buffer doing?
We've asked to read from an
empty ring buffer, so the ring
buffer needs to wait until data is
available to read. It calls
sleep_on to wait until then.

What will wake it up? Writing to
the other end of the TTY, which
will be done by the terminal
emulator.

As such, our next stop in the
codebase is the terminal
emulator - one of ToaruOS's
earliest graphical applications.

The terminal is actually doing a
lot of things, but we're
particularly interested in how it
will receive our key press when
we first type 'f' and for that we
need to look at the
handle_incoming method.

The terminal is waiting for events
from the window compositor,
which will send messages
through a ToaruOS-specific
messaging system called a
packet exchange.

That means we need to look at
another application to see how
our key presses get to the shell,
so next we'll look at the
compositor.

The compositor performs many
functions, but we'll focus on how
it handles keyboard input for
now.

The compositor runs a thread to
read scancodes from the
keyboard device file and turns
them into messages which it
sends back to another thread.

The read call on line 562 directly
translates to a read system call
that is very similar to the one
from the shell.

Hurry up and wait...

So our shell, terminal, and compositor are all sitting around waiting for other
things to happen.

Let's see how things unfold when we hit that first key: f

As soon as we hit the key, a
hardware interrupt triggers on the
CPU. Long before our shell ever
started running, the PS/2
keyboard driver set up an
interrupt handler, and so the CPU
will call our keyboard_handler
function.

The keyboard driver is very
simple and just fills a buffer with
the incoming scancode, which
will wake up the compositor.

Back in the compositor, our read
call has finished and we have a
scancode. We turn that scancode
into a key event message and
send it to the compositor's main
thread as a packet exchange
message with yutani_msg_send.

The compositor's main event
handler thread is waiting to
receive messages, both from the
keyboard thread and from all of
the client applications that are
communicating with it.

It will see the key event and then
pass it off to handle_key_event.

There, it will be checked against
various window management
keybindings and eventually
passed off to the focused
window's application.

...

...

...

… which brings us back to the
terminal. Our call to yutani_poll
returns, giving us a KEY_EVENT,
which we then pass to the
appropriately-named key_event
for further processing.

key_event checks if we need to
do special processing before
writing the key to the TTY master.
Many keys, such as the function
keys and arrow keys, need to be
encoded as special escape
sequences as they can't be
represented as single bytes.

Our f key can just be sent as the
character "f", though, so we call
handle_input('f') which will
write to our TTY.

As there is now data available
from our TTY, we can go back to
the shell, which will finally return
from fgetc, receiving the letter f.

To support advanced line editing
like cursor movements, the shell
needs to figure out if the data it is
receiving is raw characters or
escape sequences, so it runs
everything through a state
machine. Luckily, our f needs no
special processing, so we can
continue.

Something we neglected to
mention earlier, as we glossed
over TTY modes, is that our TTY
is set to not automatically echo
the characters we type as we
type them. This is important in
supporting line editing, and
means we need to write back out
the character we received so it
shows up on the terminal. We
also need to add the `f` to an
internal buffer.

Since we've printed a character,
we now need to go back up the
TTY to the terminal again! Since
we've already seen some of the
details of the TTY device, we'll
skip all the way to the terminal
itself.

A thread in the terminal is always
reading from the TTY master, and
will receive our `f` and run it
through the ANSI escape
sequence processor.

Terminals are complicated. In the
early days of digital computer
text, only basic black-and-white
character cell displays were
available, and they only
supported a handful of
characters.

These days, terminals support
full-color Unicode text, hundreds
of formatting options, cursor
movement...

These formatting effects are
made possible through complex
escape sequences.

We're going to skip all of that.

At the end of the day, the escape
processor will eventually call two
functions: cell_set and
cell_redraw. The first of these
stores the `f` and all of its
formatting hints into a data
structure representing the
terminal display, and the latter
actually draws the glyph for `f`
into the window for the terminal.

At this point, we need to take a
quick break from looking at code
and talk about how windows get
displayed on the screen in
ToaruOS.

As we mentioned earlier,
ToaruOS has a window
compositor. The most important
job the compositor has is to
composite - to take all of the
windows from all of the running
applications and turn them into a
final scene.

ToaruOS's window compositor is
called Yutani (a reference to
Wayland and Alien). Yutani
represents windows as canvases
of 32-bit RGBA pixels, which it
stores in shared memory regions.

When an application wants to
draw to a window, it modifies the
pixels directly in memory and
then informs the compositor that
it should redraw the modified
regions using a flip message.

The compositor redraws only the
regions which have been
modified since the last redraw,
producing a final image which it
then copies into video memory.

To actually draw text, ToaruOS
makes use of a library called
Freetype to read TrueType and
OpenType fonts and draw glyphs.

Once we've drawn the glyph for
our 'f', we tell the compositor to
flip our modified regions.

The compositor collects all of the
screen updates and then blits the
windows together.

Using a library called Cairo to
perform pixel pushing, the
compositor can support
transparent, rotated, and
animated windows.

The last step in this process is to
copy the final frame to video
memory so it shows up on
screen.

Finally, we've typed the letter `f`!

This process repeats for the rest
of our input until we hit enter.

At this point, the shell will parse
our input, splitting it on spaces,
expanding variables, etc.

Once the shell has processed our
input, it will fork a child process.

Forking is the traditional Unix
method for creating new
processes. Forking produces a
nearly identical copy of the
running process - it has the same
virtual memory contents, the
same instruction pointer, the
same file descriptors.

But our new process will have a
different return value for the call
to fork than its parent, allowing it
to take a different code path.

In the shell, that code path leads
to a call to execvp. Within the C
library, execvp is a complicated
series of calls to readdir and
stat to find a suitable executable
within $PATH. We'll skip that and
jump to what happens when we
call the underlying exec system
call.

exec needs to load and parse our
binary.

ToaruOS uses a binary format
called ELF, and our first task is to
read that ELF file and make sure
it is actually an ELF.

So let's look at how the file
system works.

ToaruOS's primary on-disk
filesystem is ext2, an older
version of the most commonly
used filesystem on Linux (ext4).

ext2 tracks files in a structure
called an inode, and each inode
references blocks that contain
file data.

When we read part of a file, we
need to find what blocks to look
at and where they are on disk.

Our ext2 driver keeps recently
used blocks in a cache, but if we
haven't yet read the blocks we
need, we'll need to read them
from the underlying block device -
in this case, an ATA hard disk.

Once we've read all of the blocks
from disk, we can load our binary
into memory by copying
sections.

When we're done loading the
binary, we jump to userspace and
start running our newly loaded
code.

After all of that work, we're now
running our fetch binary.

fetch makes use of a special
feature in ToaruOS: The network
filesystem. Instead of creating a
socket, fetch opens the virtual
file /dev/net/toaruos.org:80

In the network filesystem, we
lookup "toaruos.org" and create a
TCP socket. We store this socket
in a virtual file node that we'll add
to the running process's file
descriptor table.

Writing to the virtual file that the
network filesystem gave us will
send TCP packets.

Back in fetch, we write our HTTP
requests headers...

When the network card receives
packets from the router, it passes
them to the network processing
thread. Each open socket has a
corresponding queue of data that
has yet to be read, and the
network processing thread will
add our newly received packet to
the appropriate queue.

Reading from the virtual file will
call net_recv to pull data out of
the queue.

The web server on the other end
will respond, and we will read the
result and print it to the terminal.

Turns out we just printed a PDF
to our terminal, which looks like a
bunch of garbage.

Oops.

Demos

Demos

Python 2.7

vim, gcc

Quake

Future

Design Goals - Now

Porting software

GUI

Clean code

Future

Now: "Misaka" x86-64 kernel project

Next year: Porting NetSurf; maybe Webkit?

Far future: glib, GTK...

Questions?

Thanks!
IRC
#toaruos on Freenode

Sites
toaruos.org
github.com/klange/toaruos

Historical Screenshots
y/toaruos-screens

Live CD
y/toaruos-iso

